Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Vis Sci Technol ; 12(4): 4, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37017959

RESUMO

Purpose: Lamina cribrosa (LC) deformation is hypothesized to play a major role in glaucoma pathogenesis. The purpose of this study was to determine in vivo how varying intraocular pressure (IOP) under fixed intracranial pressure (ICP), and vice versa, deforms the pore paths throughout the LC volume. Methods: Spectral-domain optical coherence tomography scans of the optic nerve head were acquired from healthy adult rhesus monkeys under different pressures. IOP and ICP were controlled with gravity-based perfusion systems into the anterior chamber and lateral ventricle, respectively. IOP and ICP were modulated from baseline to high (19-30 mmHg) and highest (35-50 mmHg) levels while maintaining a fixed ICP of 8 to 12 mmHg and IOP of 15 mmHg, respectively. After three-dimensional registration and segmentation, the paths of pores visible in all settings were tracked based on their geometric centroids. Pore path tortuosity was defined as the measured distance divided by the minimal distance between the most anterior and posterior centroids. Results: The median pore tortuosity at baseline varied among the eyes (range, 1.16-1.68). For the IOP effect under fixed ICP (six eyes, five animals), two eyes showed statistically significant increased tortuosity and one showed a decrease (P < 0.05, mixed-effects model). No significant change was detected in three eyes. When modulating ICP under fixed IOP (five eyes, four animals), a similar response pattern was detected. Conclusions: Baseline pore tortuosity and the response to acute pressure increase vary substantially across eyes. Translational Relevance: LC pore path tortuosity could be associated with glaucoma susceptibility.


Assuntos
Glaucoma , Disco Óptico , Animais , Pressão Intraocular , Tonometria Ocular , Tomografia de Coerência Óptica/métodos
2.
Invest Ophthalmol Vis Sci ; 63(1): 18, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-35024761

RESUMO

Purpose: Growing evidence suggests that dendrite retraction or degeneration in a subpopulation of the retinal ganglion cells (RGCs) may precede detectable soma abnormalities and RGC death in glaucoma. Visualization of the lamellar structure of the inner plexiform layer (IPL) could advance clinical management and fundamental understanding of glaucoma. We investigated whether visible-light optical coherence tomography (vis-OCT) could detect the difference in the IPL sublayer thicknesses between small cohorts of healthy and glaucomatous subjects. Method: We imaged nine healthy and five glaucomatous subjects with vis-OCT. Four of the healthy subjects were scanned three times each in two separate visits, and five healthy and five glaucoma subjects were scanned three times during a single visit. IPL sublayers were manually segmented using averaged A-line profiles. Results: The mean ages of glaucoma and healthy subjects are 59.6 ± 13.4 and 45.4 ± 14.4 years (P = 0.02.) The visual field mean deviations (MDs) are -26.4 to -7.7 dB in glaucoma patients and -1.6 to 1.1 dB in healthy subjects (P = 0.002). Median coefficients of variation (CVs) of intrasession repeatability for the entire IPL and three sublayers are 3.1%, 5.6%, 6.9%, and 5.6% in healthy subjects and 1.8%, 6.0%, 7.7%, and 6.2% in glaucoma patients, respectively. The mean IPL thicknesses are 36.2 ± 1.5 µm in glaucomatous and 40.1 ± 1.7 µm in healthy eyes (P = 0.003). Conclusions: IPL sublayer analysis revealed that the middle sublayer could be responsible for the majority of IPL thinning in glaucoma. Vis-OCT quantified IPL sublayers with good repeatability in both glaucoma and healthy subjects.


Assuntos
Glaucoma/diagnóstico , Pressão Intraocular/fisiologia , Células Ganglionares da Retina/patologia , Tomografia de Coerência Óptica/métodos , Campos Visuais/fisiologia , Adulto , Idoso , Feminino , Glaucoma/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Nervosas/patologia , Curva ROC
3.
Neuron ; 109(2): 363-376.e6, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33217328

RESUMO

The hippocampus is thought to guide navigation by forming a cognitive map of space. Different environments differ in geometry and the availability of cues that can be used for navigation. Although several spatial coding mechanisms are known to coexist in the hippocampus, how they are influenced by various environmental features is not well understood. To address this issue, we examined the spatial coding characteristics of hippocampal neurons in mice and rats navigating in different environments. We found that CA1 place cells located in the superficial sublayer were more active in cue-poor environments and preferentially used a firing rate code driven by intra-hippocampal inputs. In contrast, place cells located in the deep sublayer were more active in cue-rich environments and used a phase code driven by entorhinal inputs. Switching between these two spatial coding modes was supported by the interaction between excitatory gamma inputs and local inhibition.


Assuntos
Região CA1 Hipocampal/fisiologia , Planejamento Ambiental , Rede Nervosa/fisiologia , Células de Lugar/fisiologia , Percepção Espacial/fisiologia , Animais , Região CA1 Hipocampal/citologia , Eletrodos Implantados , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/citologia , Ratos , Ratos Long-Evans
4.
Sci Rep ; 10(1): 16965, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046795

RESUMO

Phase unwrapping is one of the major challenges in multiple branches of science that extract three-dimensional information of objects from wrapped signals. In several applications, it is important to extract the unwrapped information with minimal signal resolution degradation. However, most of the denoising techniques for unwrapping are designed to operate on the entire phase map to remove a limited number of phase residues, and therefore they significantly degrade critical information contained in the image. In this paper, we present a novel, smart, and automatic filtering technique for locally minimizing the number of phase residues in noisy wrapped holograms, based on the phasor average filtering (PAF) of patches around each residue point. Both patch sizes and PAF filters are increased in an iterative algorithm to minimize the number of residues and locally restrict the artifacts caused by filtering to the pixels around the residue pixels. Then, the improved wrapped phase can be unwrapped using a simple phase unwrapping technique. The feasibility of our method is confirmed by filtering, unwrapping, and enhancing the quality of a noisy hologram of neurons; the intensity distribution of the spatial frequencies demonstrates a 40-fold improvement, with respect to previous techniques, in preserving the higher frequencies.

5.
Opt Express ; 25(17): 20172-20182, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29041701

RESUMO

We present a novel single-shot four-wavelength quantitative phase microscopy (FW-QPM). Four lasers operating at different wavelengths are multiplexed with a pair of dichroic mirrors and a polarization beam splitter in a three-mirror quasi-common-path interferometer. After a single-shot interference pattern is obtained with a monochrome camera, four holograms of different wavelengths were demultiplexed from it in the frequency domain with polarization- and frequency-division multiplexing. Polarization-division demultiplexing scheme uses polarization dependent visibility changes in an interference pattern, and it plays a critical role in making only two interference patterns exist within a single quadrant in the frequency domain. We have used a single-mode optical fiber as a phase object sample and demonstrated that a measured single-shot interference pattern can be successfully demultiplexed into four different interferograms of different wavelengths with our proposed scheme.

6.
Opt Express ; 23(20): 26825-33, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26480193

RESUMO

We present a quasi-common-path interferometer with a double field of view (FOV). The laser beam of an imaging system is separated into three parts using three mirrors; the first and second beams are used to image two different areas of a sample, while the third beam functions as a reference beam. The reference beam is prepared by making clear area in a sample and projecting it on an image sensor. A double FOV is obtained by Fourier domain multiplexing, whereby two interferometric images corresponding to two different areas of a sample are modulated with two different spatial carrier frequencies. The feasibility of this technique is experimentally demonstrated by imaging two different areas of a test target with a single image sensor.

7.
Opt Express ; 23(9): 11264-71, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25969222

RESUMO

We present a reduced-phase triple-illumination interferometer (RPTII) as a novel single-shot technique to increase the precision of dual-illumination optical phase unwrapping techniques. The technique employs two measurement ranges to record both low-precision unwrapped and high-precision wrapped phases. To unwrap the high-precision phase, a hierarchical optical phase unwrapping algorithm is used with the low-precision unwrapped phase. The feasibility of this technique is demonstrated by measuring a stepped object with a height 2100 times greater than the wavelength of the source. The phase is reconstructed without applying any numerical unwrapping algorithms, and its noise level is decreased by a factor of ten.

8.
J Opt Soc Am A Opt Image Sci Vis ; 31(11): 2429-36, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25401354

RESUMO

Volume measurement of a phase object is one of the most distinctive capabilities of quantitative phase microscopy (QPM). However, the accuracy of a measured volume is limited by the different noises of a measurement system and the finite bandpass filter used in the phase extraction algorithm. In this paper, we analyze the inherent errors in volume measurement with QPM and propose the optimum condition that can minimize these errors. We find that phase information of a sample in the frequency domain nonlinearly oscillates as a function of the phase shift corresponding to the sample and its medium, and that the phase information of a sample inside the bandpass filter can be maximized by a proper phase shift. Through numerical simulations and actual experiments, we demonstrate that the error in phase volume measurement can be effectively reduced by the enhancement of the phase signal inside the bandpass region using an optimum amount of phase, which can be controlled by changing either the medium index or the wavelength of illumination.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Algoritmos , Modelos Teóricos , Razão Sinal-Ruído
9.
Opt Lett ; 39(19): 5740-3, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25360973

RESUMO

We present a reduced-phase dual-illumination interferometer (RPDII) that measures the topography of a sample with large step height variation. We experimentally demonstrate the basic principle and the feasibility of this novel single-shot quantitative phase imaging. Two beams of this interferometer illuminate a sample at different incident angles, and two phases of the different incident angles and their phase difference are simultaneously recorded using three spatial frequencies. The relative phase difference between two beams of an RPDII can be controlled by adjusting the angle such that the maximum phase difference is smaller than 2π, and thus there is no phase wrapping ambiguity in the reconstructed phase. One 4f optical system with a transmission grating is used to illuminate the sample with two collimated beams incident at different angles. The feasibility of this technique is demonstrated by measuring the thicknesses of two stepped metal layers with heights of 150 and 660 µm. Although the change in stepped height is more than 1000 times the wavelength of the laser used in our interferometer, the thicknesses of these two metal layers are successfully obtained without the use of an unwrapping algorithm.

10.
Opt Lett ; 39(10): 2908-11, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978234

RESUMO

We present a quantitative phase microscopy scheme that simultaneously acquires two phase images at different wavelengths. The simultaneous dual-wavelength measurement was performed with a diffraction phase microscope (DPM) based on a transmission grating and a spatial filter that form a common-path imaging interferometer. With a combined laser source that generates two-color light continuously, a different diffraction order of the grating was utilized for each wavelength component so that the dual-wavelength interference pattern could be distinguished by the distinct fringe frequencies. Our dual-wavelength phase imaging allowed us to extract information on the physical thickness and the refractive index for a specimen immersed in a highly dispersive surrounding medium. We found that our dual-wavelength DPM (DW-DPM) provides an accurate measurement of the volume and the refractive index of a microscopy sample with good measurement stability that results from the common-path geometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...